
www.manaraa.com
1

School of Information Technologies / The University of Sydney 2011-S2

Software Development in Java
Week8 • Semester 2 • 2015

Object-Oriented Development
• Design process
• Implementation process
• Testing process (Supplement: Introduction to JUnit)

File IO

Next Wed (WEEK 9):
• QUIZ 2 :On-paper closed-book
• Assignment Design Draft: in Labs

School of Information Technologies / The University of Sydney 2011-S2

Software Development Procedure

www.manaraa.com
2

School of Information Technologies / The University of Sydney 2011-S2

Software Development Activities

Five activities of the software development process:

1. Establishing the requirements

2. Design

3. Implementation

4. Testing

5. Maintenance

School of Information Technologies / The University of Sydney 2011-S2

Requirements

 Software requirements specify the tasks that a software package
must accomplish
 Decide what to do NOT how to do

 An initial set of requirements is often provided, but the detailed and
complete requirements need to be established. Careful attention to
the requirements can save time significantly.

 Output of the requirements phase:
Requirements Document

 Describes in detail what program will do once completed, how it will
respond to the possible inputs

 User manual: tells how user will operate program
 Performance criteria: give requirements for response time,

transaction throughput, etc.

www.manaraa.com
3

School of Information Technologies / The University of Sydney 2011-S2

 Software design specifies how a program works
 A software design determines:

 The structures that underlie the problem solution
 How the solution can be broken down into manageable pieces
 What each piece will do

 An object-oriented design defines which classes (and objects) are
needed, and defines how they interact

 Low-level design details include how individual methods will accomplish
their tasks

 Output of the design phase:
 Design document:

 Description of classes and major methods
 Diagrams showing the relationships among the classes

Design

School of Information Technologies / The University of Sydney 2011-S2

Implementation

 Implementation is the process of translating a design document into
source code programs

 Code implements classes and methods discovered in the design phase

 Implementation should focus on coding details, including style guidelines
and documentation

 Output of the implementation phase: complete software

www.manaraa.com
4

School of Information Technologies / The University of Sydney 2011-S2

 Testing aims to verify that the program will solve the pre-defined
problem under all the constraints specified in the requirements

 A program should be thoroughly tested with the goal of finding errors

 Testing processes use test classes

 Output of the testing phase:
 Test report

 Description of test classes, test data and the results of the tests

Testing

School of Information Technologies / The University of Sydney 2011-S2

Programs need to be maintained
 Fix errors that did not arise in testing phase

 Evolve as requirements change
 add functionality
 delete dead code

 Evolve as environment changes
 New network paradigm
 New service paradigm
 New database contract
 … etc etc

 Program maintenance is extremely important and
expensive
 Recent estimates at 80-90% of total software system costs

Maintenance

www.manaraa.com
5

School of Information Technologies / The University of Sydney 2011-S2

Software Process Models

Waterfall model
 In Waterfall model, each software

development activity (from
requirements to maintenance) will be
conducted one after the other
sequentially and no revision on the
previous step will be included.

 The waterfall model is generally
simplistic and unrealistic, but it serves
as a reference point and defines
important concepts.

The unmodified "waterfall model". Progress flows
from the top to the bottom, like a waterfall.
(wikipedia)

School of Information Technologies / The University of Sydney 2011-S2

Evolutionary Software Development Model

Validation
Final

version

Development
Intermediate

versions

Specification
Initial
version

Outline
description

Concurrent
activities

Basic idea:
Build prototype version of system, seek user comments, and keep
refining until accomplished

Other side of formality spectrum from Waterfall Model

www.manaraa.com
6

School of Information Technologies / The University of Sydney 2011-S2

Other Models

 There are many many many software process models
 Some models are more suitable for some kinds of software

development
 Each software-intensive business has its preferred model, and trains

new employees in using their model.
 There are many businesses that develop and sell software process

models

School of Information Technologies / The University of Sydney 2011-S2

COMP9103 Software Development Activities

1. Requirements

2. Design

3. Implementation

4. Testing

5. Maintenance

To do by
COMP9103

students

COMP9103
Assignment Emphasis

1. Design
2. Implementation
3. Testing

www.manaraa.com
7

School of Information Technologies / The University of Sydney 2011-S2

COMP9103: Design
Identifying Classes and Objects
 A fundamental part of OOP design is determining the classes that

will contribute to the programming solution

 A class represents a distinct kind of real-world concept, such as a
bank account, a rectangle, a person etc.

 An object of a given class represents one instance of real-world
concept: someone’s bank account, a 4X6 rectangle, a person
named Tom etc.

 One way to identify potential classes is to identify the objects
discussed in the requirements

 Objects are generally nouns, while the services that an object
provides are generally verbs

School of Information Technologies / The University of Sydney 2011-S2

COMP9103: Design

 Your design should consist of a list of classes
 Each class may contain:

 A description of the data and behavior of the class

 A list of instance fields (and probably some static fields)

 A list of constructors

 A list of methods

 A brief description of the algorithms used by the major
methods

www.manaraa.com
8

School of Information Technologies / The University of Sydney 2011-S2

A Case study: Zoo
Requirements

AnimalRest is a zoo, managed by an enthusiast who loves animals and
doesn’t understand money. However the Australian tax office (ATO)
has decided that accounting standards mean that the zoo must be able
to track its assets properly: each animal must have a book value, based
on the initial cost plus the cost of all upkeep (food!). ATO allows the use
of a formula to determine cost of feeding, based on animals weight and
a typical feed proportional to the weight. The zoo staff, called keepers,
are assigned duties looking after one or more animals from the
collection: a keeper assigned to the animal can weigh it and/or feed it.
Each keeper may be expert in the needs of one or more species.

 In this case study

 What are the major classes?

 What fields will each class have?

 What are the prominent methods in each of these classes?

School of Information Technologies / The University of Sydney 2011-S2

Noun Phrase Identification

 A good starting point:

 To find the classes: look for the nouns and noun phrases in the
textual descriptions of the problem.

 Now work in pairs to figure out the classes that you might use for the
Zoo

www.manaraa.com
9

School of Information Technologies / The University of Sydney 2011-S2

A Case study: Zoo

Requirements
AnimalRest is a zoo, managed by an
enthusiast who loves animals and
doesn’t understand money. However
the Australian tax office (ATO) has
decided that accounting standards
mean that the zoo must be able to
track its assets properly: each animal
must have a book value, based on the
initial cost plus the cost of all upkeep
(food!). ATO allows the use of a
formula to determine cost of feeding,
based on animals weight and a typical
feed proportional to the weight. The
zoo staff, called keepers, are assigned
duties looking after one or more
animals from the collection: a keeper
assigned to the animal can weigh it
and/or feed it. Each keeper may be
expert in the needs of one or more
species.

Overkill: contains classes
as well as attributes
(maybe instance
variables) and other
stuff

School of Information Technologies / The University of Sydney 2011-S2

A Case study: Zoo

Requirements
AnimalRest is a zoo, managed by an
enthusiast who loves animals and
doesn’t understand money. However
the Australian tax office (ATO) has
decided that accounting standards
mean that the zoo must be able to
track its assets properly: each animal
must have a book value, based on the
initial cost plus the cost of all upkeep
(food!). ATO allows the use of a
formula to determine cost of feeding,
based on animals weight and a typical
feed proportional to the weight. The
zoo staff, called keepers, are assigned
duties looking after one or more
animals from the collection: a keeper
assigned to the animal can weigh it
and/or feed it. Each keeper may be
expert in the needs of one or more
species.

 better: defines a good set of
classes
 Note: We can make multiple

animals all with the same
class, just like you have many
string objects of the String
class.

Animal class

 Instance variables

 Constructors

 Methods

Keeper class

 Instance variables

 Constructors

 Methods

www.manaraa.com
10

School of Information Technologies / The University of Sydney 2011-S2

UML Class Diagrams

 UML (Unified Modeling Language) notation is for conceptual
models, ideal for OO code structure!

 Usually written before class is defined

 Used by the programmer defining the class

 Contrast with the interface used by programmer who uses the
class

 the UML class diagram represents class with box which
contain three parts:
 the name;

 the fields; &

 the methods

Animal
String species;
double initialCost;
double weight;
String name;

void feed() {
double getWeight()
public double getInitialCost()
public String getName()

School of Information Technologies / The University of Sydney 2011-S2

Implementing a class

 Determine instance fields for Animal class

private String species;
private double initialCost;
private double weight;
private String name;

 Access these instance variables using “getters” and “setters”.

www.manaraa.com
11

School of Information Technologies / The University of Sydney 2011-S2

Implementing a class

 How can we construct an animal?

 A constructor is a piece of code that can be used to make a
new instance of a class.

 In order to construct an object that is more complex than a
primitive type, we will need to initialize any instance fields it has.

 Our fields are species, initialCost, weight and name.
 We could decide to initialize them all in one go, so we could make a

new animal like this:

 or we could initialize them with no arguments and then set the
values later:

Animal Bruce = new Animal("Lion", 60000, 190, “Bruce”);

Animal Leo = new Animal();

School of Information Technologies / The University of Sydney 2011-S2

Implementing a class

 Let’s write a constructor now:

 Now we can make a new Animal like this:

 Zee.species = "Ant";
 Zee.initialCost = 1;
 Zee.weight = 0.000001 = 10−6

 Zee.name = “Z”

public Animal(String s, double cost, double w, String n) {
species = s;
initialCost = cost;
weight = m;
name = n;

}

Animal Zee = new Animal("Ant", 1, 0.000001,”Z”);

www.manaraa.com
12

School of Information Technologies / The University of Sydney 2011-S2

Implementing a class
 A constructor takes no arguments:

 And then we would need to set the fields in the Animal by setters.

 When creating more than one object of a given class (e.g., Animal)
at a time, it is convenient to have a constructor that takes no
arguments:

which can accommodate multiple objects (say 30 objects) of the
type Animal using the constructor without any parameter

public Animal() { ... }

public Animal() {
species = null;
initialCost = -1; /* nonsense values to indicate that
weight = -1.0; variables are not yet set properly.
name = null; */

}

ArrayList<Animal> myAnimals = new ArrayList<Animal>();

School of Information Technologies / The University of Sydney 2011-S2

Implementing a class

 Identify methods for Animal class

public void feed() {
// a method to feed this animal

}

public double getWeight() {
// how much this animal weighs now

}

public double getInitialCost() {
// how much is it worth now?

}

public String getName() {
}

www.manaraa.com
13

School of Information Technologies / The University of Sydney 2011-S2

More Ingredients for Animal
Our class needs a few more ingredients:
 some instance variables:

 an ID (for the records)
 a date of birth
 a measure of its appetite
 how much the food costs
 (maybe) a list of the keepers who

can look after it

 and some methods:
 getBookValue()
 calcFeedCost()
 getVetCosts()
 getTotalCostsToDate()
 . . .

School of Information Technologies / The University of Sydney 2011-S2

API of a class
 Application Programming Interface (API) gives all the method

profiles (its name, arguments, and return type) but not how each one
works.

 The API allows any user to use the library without having to examine
the code in the implementation.

 The guiding principle in API design is to provide information on the
methods to clients:
 what methods are in the library/class
 what parameters they use
 what tasks they perform

www.manaraa.com
14

School of Information Technologies / The University of Sydney 2011-S2

Documentation

 Java code is for computers to read

 Documentation is needed for humans for two reasons:
 To clarify what the code does

 Libraries must have documentation so that programmers can use
them in the client programs

 Programs must have documentation so that users can use them
 Place a comment before each public method header that fully

specifies how to use method.

 To clarify how the code works
 Implementations must have documentation so that programmers

can fix them, or change them
 Write comments within class definition to describe implementation

details.

Java has a way of helping with documentation
of what a library does, using javadoc

School of Information Technologies / The University of Sydney 2011-S2

 Documentation is needed to provide information on the components
in a package if they are to be re-used by other programs

 Documentation comments for javadoc have the form /** comment */
 The comment can include @ tags.

 E.g.

 Class definition with comment on how to use class
 Place a comment before each public method heading that fully specifies how to

use method.
 Write comments within class definition to describe implementation details.

Javadoc Comments

/** demo on the use of javadoc
* example
* @author x.wang
*/

/**
* Extracts a list of accounts whose balance is no less
* than a given amount specified
* @param amount
* @return the list of accounts’ owners with balance
* less than/equal to amount

*/
//method definition

www.manaraa.com
15

School of Information Technologies / The University of Sydney 2011-S2

Javadoc

 javadoc extracts information from class and method headers
and the programmer’s javadoc comments

 Typing

will run javadoc on all your java files and produce HTML files

 We also can generate javadoc by using Eclipse IDE
Choose Project  Generate Javadoc

You will practice on this in lab

javadoc *.java

School of Information Technologies / The University of Sydney 2011-S2

Animal API

www.manaraa.com
16

School of Information Technologies / The University of Sydney 2008-S1

Unit Testing

School of Information Technologies / The University of Sydney 2011-S2

Unit Testing
 Unit test: to verify whether that a class works correctly in isolation, outside

a complete program.

 To test a class, write a test class.
 Test class: a class with a main() method that contains statements to test

another class.
 Write a simple test class, which typically includes the following steps:

 Construct objects of the class that is being tested
 Invoke each of the methods to be tested on different levels of cases
 Print out results to see whether methods work as you expected

 Test harness file
 A separate java file, contains name of the class tested + Tester

 Eg: AnimalTester.java to test Animal.java
 main() method to test the methods work as expected on the range of

input data selected
 Test data of two types:

 Normal data
 Extreme data (empty files, negative values, illegal strings, etc)

You are expected to do thorough test on your implementation
Testing report on sample testing files & your own sets of testing

www.manaraa.com
17

School of Information Technologies / The University of Sydney 2011-S2

import java.util.ArrayList;

public class AnimalTester {
public static void main(String[] args) {

int Id=1001;
String name = "leo";
String species = "lion";
int Dob = 628;
double cost=11000;
Animal animal = new Animal(Id, name, species, Dob,cost);
System.out.println(animal);

Keeper kp= new Keeper(100, "Mike");
animal.addKeeper(kp);
kp= new Keeper(101, "James");
animal.addKeeper(kp);

ArrayList<Keeper> kps= animal.getKeepers();
if(kps.size()!=0){

System.out.print("keepers:");
for (Keeper k : kps){

System.out.print(" " + k.getName()+ " ");
}

}

}
}

leo the lion
keepers: Mike James

School of Information Technologies / The University of Sydney 2011-S2

File IO

www.manaraa.com
18

School of Information Technologies / The University of Sydney 2011-S2

Our Java program

Inputs
• Mouse
• Keyboard
• Files on disk
• Databases
• . . .

Outputs
• Screen
• Speakers
• Files on disk
• Databases
• . . .

Java I/O

Text files via Scanner class

The output can be written to a file

Advantages of File I/O
Input can be automated (rather than being entered manually)
Permanent copy
Output from one program can be input to another

School of Information Technologies / The University of Sydney 2011-S2

Java I/O Streams

 An I/O Stream represents an input source or an output destination. A
stream can represent many different kinds of sources and destinations,
including disk files.

 A stream is a sequence of data.

 A program uses an input stream to read data from a source, one item at
a time:

 A program uses an output stream to write data to a destination, one item
at time:

www.manaraa.com
19

School of Information Technologies / The University of Sydney 2011-S2

File I/O

 A File object encapsulates the properties of a file or a path, but does
not contain the I/O methods for reading/writing data from/to a file.

 In order to perform file I/O, we need to create objects using
appropriate Java I/O classes.

 The objects contain the methods for reading/writing data from/to a file.

 This section introduces how to read/write strings and numeric values
from/to a text file using the Scanner and PrintWriter classes.

File class http://docs.oracle.com/javase/7/docs/api/java/io/File.html

School of Information Technologies / The University of Sydney 2011-S2

File Input via Scanner class
import java.util.*;

import java.io.*;

public class AverageInFile1 {

public static void main(String[] args){

try{

File file = new File(args[0]);

Scanner reader = new Scanner(file);

double sum = 0.0; // cumulative total

int num = 0; // number of values

// compute average of values in input file

while (reader.hasNextDouble()){

sum += reader.nextDouble();

num++;

}

System.out.println("Average of values in ” +
args[0] + “is ” + sum / num);

}

catch (Exception e) {

System.out.println("Error: "+e.getMessage());

}

}

}

import some other java classes

Get a filename from the
command line, set it up for
reading

Get numbers from the file,
compute their average

What to do if something
goes wrong, called as
exceptions in Java

Calculate the average of double
values in an input file

www.manaraa.com
20

School of Information Technologies / The University of Sydney 2011-S2

import java.util.*;
import java.io.*;

public class AverageInFile1 {
public static void main(String[] args){
try{

File file = new File(args[0]);
Scanner reader = new Scanner(file);
double sum = 0.0; // cumulative total
int num = 0; // number of values

// compute average of values in input file
while (reader.hasNextDouble()){

sum += reader.nextDouble();
num++;

}
System.out.println("Average of values in ” + args[0] +
“is ” + sum / num);
}

catch (Exception e) {
System.out.println("Error: "+e.getMessage());

}
}

}

AverageInFile1.java

1.0

13.0 12.3 14.2

10.987 23.3

File: NumberList.txt available for use

> java AverageInFile1 NumberList.txt

Average of values in NumberList.txt is 12.46

Terminal interaction

School of Information Technologies / The University of Sydney 2011-S2

File Input via Scanner class
import java.util.*;

import java.io.*;

public class AverageInFile1 {

public static void main(String[] args){

try{

File file = new File(args[0]);

Scanner reader = new Scanner(file);

double sum = 0.0; // cumulative total

int num = 0; // number of values

// compute average of values in input file

while (reader.hasNextDouble()){

sum += reader.nextDouble();

num++;

}

System.out.println("Average of values in ” + args[0]
+ “is ” + sum / num); }

catch (Exception e) {

System.out.println("Error: "+e.getMessage());

}

}

}

These import some useful classes
that your program needs to use

 Scanner class is in java.util

 File class are in java.io

Both these are already downloaded
to the lab computers

Importing classes is common in
java

www.manaraa.com
21

School of Information Technologies / The University of Sydney 2011-S2

File Input via Scanner class
import java.util.*;

import java.io.*;

public class AverageInFile1 {

public static void main(String[] args){

try{

File file = new File(args[0]);

Scanner reader = new Scanner(file);
double sum = 0.0; // cumulative total

int num = 0; // number of values

// compute average of values in input file

while (reader.hasNextDouble()){

sum += reader.nextDouble();

num++;

}

System.out.println("Average of values in ” + args[0] + “is ” + sum / num);

}

catch (Exception e) {

System.out.println("Error: "+e.getMessage());

}

}

}

Sets up a new stream from a file

 Filename is args[0], that is, the
first argument on the command
line

 Sets up a reader for that file, using
the Scanner class to parse the
input stream

School of Information Technologies / The University of Sydney 2011-S2

Text File Input via Scanner Class

 Create a new File object from the given file-name

File file-obj = new File(file-name);
//to set up a stream from the file

 Create a new Scanner object and set up its input resource
as the file object

Scanner scn-obj = new Scanner(file-obj);

www.manaraa.com
22

School of Information Technologies / The University of Sydney 2011-S2

File Input via Scanner class
import java.util.*;

import java.io.*;

public class AverageInFile1 {

public static void main(String[] args){

try{

File file = new File(args[0]);

Scanner reader = new Scanner(file);

double sum = 0.0; // cumulative total

int num = 0; // number of values

// compute average of values in input file

while (reader.hasNextDouble()){

sum += reader.nextDouble();
num++;

}

System.out.println("Average of values in ” + args[0] + “is ” + sum / num);

}

catch (Exception e) {

System.out.println("Error: "+e.getMessage());

}

}

}

While the next token in the input
stream “reader” is a double

 Add the next double in the
input stream to “sum”

 Increment “num” by 1

School of Information Technologies / The University of Sydney 2011-S2

File Input via Scanner class
import java.util.*;

import java.io.*;

public class AverageInFile1 {

public static void main(String[] args){

try{
File file = new File(args[0]);

Scanner reader = new Scanner(file);

double sum = 0.0; // cumulative total

int num = 0; // number of values

// compute average of values in input file

while (reader.hasNextDouble()){

sum += reader.nextDouble();

num++;

}

System.out.println("Average of values in ” + args[0] + “is ” + sum / num);

}

catch (Exception e) {

System.out.println("Error: "+e.getMessage()); }

}

}

Catches exceptions, if
something goes wrong

www.manaraa.com
23

School of Information Technologies / The University of Sydney 2011-S2

File Input via Scanner class
import java.util.*;

import java.io.*;

public class AverageInFile1 {

public static void main(String[] args){

try{
File file = new File(args[0]);

Scanner reader = new Scanner(file);

double sum = 0.0; // cumulative total

int num = 0; // number of values

// compute average of values in input file

while (reader.hasNextDouble()){

sum += reader.nextDouble();

num++;

}

System.out.println("Average of values in ” + args[0] + “is ” + sum / num);

}

catch (Exception e) {
System.out.println("Error: "+e.getMessage());

}

}

}

Normally, the “try”
block is executed

If something goes wrong
in the “try” block, then
the “catch” block is
executed.

School of Information Technologies / The University of Sydney 2011-S2

File Input via Scanner class
import java.util.*;

import java.io.*;

public class AverageInFile1 {

public static void main(String[] args){

try{
File file = new File(args[0]);

Scanner reader = new Scanner(file);

double sum = 0.0; // cumulative total

int num = 0; // number of values

// compute average of values in input file

while (reader.hasNextDouble()){

sum += reader.nextDouble();

num++;

}

System.out.println("Average of values in ” + args[0] + “is ” + sum / num);

}

catch (Exception e) {
System.out.println("Error: "+e.getMessage());

}

}

}

What can go wrong?

No command line
argument

file does not exist

reader finds something
unexpected

Divide by zero

. . …

There are many other kinds
of exceptions

It is possible to refine the
“catch” to catch special
kinds of exceptions

www.manaraa.com
24

School of Information Technologies / The University of Sydney 2011-S2

Our Java program

Inputs
• Mouse
• Keyboard
• Files on disk
• Databases
• . . .

Outputs
• Screen
• Speakers
• Files on disk
• Databases
• . . .

Java I/O

Text output via PrintWriter class

PrintWriter class
http://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

School of Information Technologies / The University of Sydney 2011-S2

Text-File Output with PrintWriter

 The java.io package contains the class PrintWriter and the other
file I/O classes

 Class PrintWriter has methods println(), print() and printf() that
are used in the same way as the methods in System.out

 close(): close the PrintWriter stream (and file)

www.manaraa.com
25

School of Information Technologies / The University of Sydney 2011-S2

import java.io.*;
import java.util.*;
public class TextFileO {

public static void main(String[] args) {
try {

File fw = new File(args[0] + ".txt");
PrintWriter out = new PrintWriter(fw);
Scanner in = new Scanner(System.in);
while (in.hasNextInt()) {

out.printf("%d", in.nextInt());
out.println();

}
out.close();
System.out.println("inputs written into file successfully!");
} catch (FileNotFoundException e) {

System.out.println("The file not found.");
}

}
}

Text-File Output with PrintWriter

The java.io package contains the
class PrintWriter and the other file I/O
classes

Get a filename from the command
line, set it up for writing

Get numbers from the input, and
save them to file

What to do if
something goes
wrong, called as
exceptions in Java

School of Information Technologies / The University of Sydney 2011-S2

import java.io.*;
import java.util.*;
public class TextFileO {

public static void main(String[] args) {
try {

File fw = new File(args[0] + ".txt");
PrintWriter out = new PrintWriter(fw);
Scanner in = new Scanner(System.in);
while (in.hasNextInt()) {

out.printf("%d", in.nextInt());
out.println();

}
out.close();
System.out.println("inputs written into file successfully!");
} catch (FileNotFoundException e) {

System.out.println("The file not found.");
}

}
}

Text-File Output with PrintWriter

1

2

3

4

5

6

output: fileout.txt

> java TextFileO fileout

1 2 3 4 5 6 q

Terminal interaction

You can read this file with a file editor

www.manaraa.com
26

School of Information Technologies / The University of Sydney 2011-S2

import java.io.*;
import java.util.*;
public class TextFileO {

public static void main(String[] args) {
try {

File fw =
new File(args[0] + ".txt");

PrintWriter out = new PrintWriter(fw);
Scanner in = new Scanner(System.in);
while (in.hasNextInt()) {

out.printf("%d", in.nextInt());
out.println();

}
out.close();
System.out.println("inputs written into file successfully!");
} catch (FileNotFoundException e) {

System.out.println("The file not found.");
}

}
}

Text-File Output with PrintWriter

Construct an output
stream for writing data
to a file

The file name is obtained
from command-line
argument

School of Information Technologies / The University of Sydney 2011-S2

import java.io.*;
import java.util.*;
public class TextFileO {

public static void main(String[] args) {
try {

File fw = new File(args[0] + ".txt");

PrintWriter out = new PrintWriter(fw);
Scanner in = new Scanner(System.in);
while (in.hasNextInt()) {

out.printf("%d", in.nextInt());
out.println();

}
out.close();
System.out.println("inputs written into file successfully!");
} catch (FileNotFoundException e) {

System.out.println("The file not found.");
}

}
}

Text-File Output with PrintWriter

opening a stream to the
file and writing the
information out to the
file

file

www.manaraa.com
27

School of Information Technologies / The University of Sydney 2011-S2

Text-File Output with PrintWriter

 Construct an output stream for writing data to a file
File fw = new File(file_name);
 E.g. File fw = new File(“fileout.txt”);

 Create a new PrintWriter from an existing File object
PrintWriter out = new PrintWriter(fw);

 If the named file (eg, fileout.txt) exists already, its old contents are
lost.

 If the named file does not exist, a new empty file is created (and eg,
named fileout.txt).

PrintWriter out = new PrintWriter(new File(file_name));

PrintWriter out = new PrintWriter(new FileWriter(fw, true)); /*append the new contents
to the end of the file*/

School of Information Technologies / The University of Sydney 2011-S2

import java.io.*;
import java.util.*;
public class TextFileO {

public static void main(String[] args) {
try {

File fw = new File(args[0] + ".txt");
PrintWriter out = new PrintWriter(fw);
Scanner in = new Scanner(System.in);

while (in.hasNextInt()) {

out.printf("%d", in.nextInt());
out.println();

}

out.close();
System.out.println("inputs written into file successfully!");

} catch (FileNotFoundException e) {
System.out.println("The file not found.");

}
}

}

Text-File Output with PrintWriter

Class PrintWriter has
methods println(), print()
and printf() that are used in
the same way as the
methods in System.out

www.manaraa.com
28

School of Information Technologies / The University of Sydney 2011-S2

import java.io.*;
import java.util.*;
public class TextFileO {

public static void main(String[] args) {

try {
File fw = new File(args[0] + ".txt");
PrintWriter out = new PrintWriter(fw);
Scanner in = new Scanner(System.in);

while (in.hasNextInt()) {
out.printf("%d", in.nextInt());
out.println();

}

out.close();
System.out.println("inputs written into file successfully!");

} catch (FileNotFoundException e) {
System.out.println("The file not found.");

}
}

}

Text-File Output with PrintWriter

File and PrintWriter
constructors may throw a
FileNotFoundException,
which means that the file
could not be created.

School of Information Technologies / The University of Sydney 2011-S2

 An output file should be closed when you have done writing to it
(and an input file should be closed when you have done reading
from it).

 Use the close() method of the class PrintWriter

 For example, to close the file opened in the previous example:
out.close();

 If a program ends normally it will close any files that are open.

Closing a File

